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Abstract— Neuroscience provides rich details on sensorimo-
tor control at both the system and component levels. Nervous
systems sense, communicate, compute, and actuate movement,
using distributed component hardware with tradeoffs in speed,
accuracy, cost, sparsity, noise, and saturation throughout. The
resulting control is nevertheless remarkably fast, accurate, ro-
bust, and efficient due to a highly effective layered architecture
that combines higher layers of goals/plans/decisions/tracking
with lower layer sensing/reflex/action. This paper addresses
a gap in both neuroscience and control theory of a needed
theoretical framework that clarifies and formalizes the con-
nection between system and component level tradeoffs, how
layered, distributed, and sparse control architectures are op-
timally organized, and why there is such extreme diversity
within and across layers (from planning to reflex systems)
and levels (brain systems to neural hardware components).
We particularly emphasize speed-accuracy tradeoffs (SATs)
which are ubiquitous in both neurophysiology and sensorimotor
control. We characterize how the component SATs in spiking
neuron communication and their sensory and muscle endpoints
constrain the system SATs in both stochastic and deterministic
models. Theoretically optimal layering creates “diversity sweet
spots (DSSs), showing how to effectively layer sensorimotor
control with appropriate diversity in neurons/muscles to achieve
systems that are both fast and accurate despite being built
from components that individually are not. Furthermore, the
resulting optimal controllers for delayed/quantized systems and
that of System Level Synthesis (SLS) for distributed/localized
systems resemble the previously cryptic patterns of feedback
and feedforward seen in vertebrate nervous systems, calling for
further studies. A companion paper introduces simple demos
and a new inexpensive and easy-to-use experimental platform
that richly illustrate the theory and expand on the neuroscience
motivation briefly reviewed here.

I. INTRODUCTION

To concretely illustrate speed-accuracy tradeoffs (SATs)
in layered architectures consider riding a mountain bike
down a twisting bumpy trail. There is an obvious tradeoff
between speed down the trail, and accuracy in staying on it
and not crashing. But exactly how is the system level that
senses, communicates, computes, and actuates organized to
allow experts to have extremely robust performance despite
complex, uncertain environments and despite implementation
in a hardware level of spiking neurons that is distributed,
sparse, quantized, delayed, and/or saturating? A crucial strat-
egy is the evolution of effective layered architectures that
achieve remarkable robustness seamlessly integrate high-
layer goals/plans/decisions that track the trail with low-
layer sensing/reflex/action that handles bumps and is largely
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Fig. 1: Basic block diagram of a sensorimotor control model
for a mountain bike and rider on a twisting trail with bumps.
Each box is a component that communicates (V,S,M) or com-
putes (H,L) using spiking neurons and thus has potentially
both delay and quantization. The rider can see the trail ahead
and thus has advanced warning T that would depend on speed
and terrain, and can be used by the higher layer controller.
The bumps are not seen but can crash the bike if not correctly
handled by lower layer reflexes.

unconscious and automatic [1], [2].
Fig. 1 is a block diagram of a minimal and highly abstract

model of the system level components involved in the biking
problem, and also of the video game version presented in
a companion paper (which includes a variety of additional
illustrative demos). The plant P consists of bike and rider and
is (possibly marginally) unstable, and must track a reference
trail disturbance r(t) with small error despite unseen bumps
w(t). Each box is designated by their function and either
senses and communicates (vision V, muscle spindle sensor
S) or actuates (muscle M) or computes a control action (high
layer plan/track H and low layer reflex L). Each box can have
quantization and/or delay and depending on the hardware
level model details, stochastic noise and saturation. Vision
gives the rider advance warning of the trail ahead, which
is modeled here by a (variable) delay T between r and the
plant that depends on speed, terrain, and the trail shape.

The theoretical challenge addressed here is to provide a
framework that can compute optimally robust controllers for
problems like Figure 1 with realistic models for r, w, and
the components. We derive simple analytic formulas in im-
portant special cases that give striking insights, plus scalable
algorithms for general problems. We also show that the key
insights are remarkably robust to the assumptions (average
vs. worst-case, stochastic vs. deterministic) provided they are



Fig. 2: Large diversity in the composition of selected human
cranial and spinal nerves and the resulting speed-accuracy
tradeoffs. The dashed line shows a constant total cross-
sectional area, which is roughly proportional to the cost
to build and maintain a nerve of a given length, and is
similar across the different nerves, which are otherwise quite
different. Our nerve model will translate axon size and
number into biologically realistic delay and bandwidth, and
the theory will then connect this hardware level SAT with
system level SATs. This cartoon understates the diversity,
both between the same nerve in different individuals, and
between the axons within a single nerve, both of which are
large and poorly characterized.

consistent at the system and component level. Perhaps most
importantly we show how layering and sparse, distributed,
localized control can create systems that are robust and
biologically plausible by creating “diversity sweet spots”
(DSSs). DSSs allow systems to be both fast and accurate
despite being built from parts that are not.

DSSs appear everywhere in the nervous system and partic-
ularly in some of the components corresponding to Figure 1,
as shown in the cartoon in Figure 2. Figure 2 shows selected
cranial and spinal nerves (bundles of axons) including optic
(vision) and vestibular and sciatic (reflexes). While they
have similar total cross sectional areas (roughly proportional
to the cost to build and maintain) they have extremely
diverse compositions in terms of axon size and number [3–
6]. As we will show, this translates directly into extreme
tradeoffs in speed (in terms of delay) and accuracy (in terms
of bandwidth), that then impose tradeoffs at the system
level. Furthermore, optimal performance requires DSS in the
layering of diverse controllers (Fig. 1), which are then built
from diverse hardware components (e.g. Fig. 2).

While while modern lifestyles largely shield us from
the challenges that shaped our brain’s evolution, we see
SAT and DSS appear everywhere in neuroscience, though
the results are fragmented and incoherent, and even the
terminology is not consistent. At the system level, the
tradeoffs between speed and accuracy can be observed in
diverse activities, from decisions [7] to reaching (Fitts’
law) [8], [9] to sports (baseball, cricket, and soccer) [10],
[11] (which perhaps more reflect our evolutionary past).
An abundance of literature investigates the speed/accuracy
tradeoffs in sensorimotor control from experimental data and

from conventional control theoretical perspectives, which do
not account for hardware/communication constraints. Due to
the lack of theoretical tools that integrate both levels and the
resultant separate treatment of system and component levels,
little attention has been paid to connecting the two levels,
nor to clarifying the rich design tradeoffs and principles
from a holistic perspective. This paper aims to fundamentally
change this [12], [13].

Notation: We use x(t1 : t2) = {x(t1), x(t1 +
1), · · · , x(t2)} to denote a truncated sequence. The `∞ norm
of a sequence x is defined as ‖x‖∞ := supt |x(t)|. We use
P (x) to denote the probability density function of a random
variable x, and P (x|y) to denote the conditional probability
density function of x given another random variable y. We
use log(x) to denote the logarithm of x in base 2 and logb(x)
to denote the logarithm of x in base b. We use Z/Z+ and
R/R+ to denote the set of all/non-negative integers and the
set of all/non-negative real numbers, respectively.

II. MAIN RESULTS

To clarify the fundamental limits of sensorimotor control
imposed by hardware constraints, we present a mathematical
framework of robust control involving sensing, communica-
tion, and actuation. This framework accommodates different
assumptions on delay, data rate, and saturation in hardware
and derive performance bounds in both deterministic worst
case and stochastic average case.

In this section, we focus on a worst-case analysis, in
contrast to the average-case. The worst-case and average-case
analyses produce qualitatively similar results (Section IV-A).
The worst-case, however, is more biologically plausible. In
many sensorimotor tasks, there are strict error bounds which
cannot be violated: for example, when riding a mountain
bike on a cliff, not falling off the cliff is far more critical
than minimizing average errors. The worst-case framework
is also simpler than the average-case: deriving worst-case
performance only requires high-school level mathematics,
and thus has large potential in education and interdisciplinary
research [13], [14].

Below, we summarize the SATs in spike-based neural
signaling (Section II-A) and its impact on robust performance
for systems whose performance bottleneck lies in the neu-
ral signaling (Section II-B–II-C). Closed-form performance
bounds are derived for both a basic control system and
a layered network with uniform/diverse nerves, and the
resulting insights are consistent with those from alternative
models/assumptions discussed in Section IV.

A. Component-level SATs

In a sensorimotor feedback loop, sensory information is
transmitted by spikes (action potentials) through nerve fibers
(axons). The space and metabolic constraints of a nerve
limit the number and size of axons that can be built and
maintained. These limits lead to SATs in neural signaling [3],
[15], [16], and the specific forms of the SATs depend on
how the nerves encode information (e.g. spike-based, spike-
rate encoding). Below, we derive the SATs for spike-based



encoding in this section and discuss other alternatives in
Section IV-B.

In a spike-based encoding scheme, information is encoded
in the presence or absence of a spike in specific time inter-
vals, analogous to digital packet-switching networks [17],
[18]. This encoding method requires spikes to be generated
with sufficient accuracy in timing, which has been exper-
imentally verified in multiple types of neuron [19], [20].
To quantify the sometimes complex distributions of axon
sizes in a single nerve, we can think of a nerve as being
made up of several communication channels, each containing
axons with identical size. We assume that there are m
heterogeneous communication channels and index them by
i ∈ {1, 2, · · · ,m}. We use ni, ρi to denote the number of
axons contained in channel i and the radius of axons in
channel i, respectively. We use Ti, Ri to denote the delay
and data rate (i.e. the amount of information in bits that can
be transmitted) of channel i, respectively.

When the signaling is precise and noiseless, an axon with
achievable firing rate φ can transmit

Cs = φ (1)

bits of information per unit time. For sufficiently large
myelinated axons, the propagation speed 1/Ti and firing rate
φ of action potentials are both approximately proportional to
the axon radius ρ [3], i.e.

T = α/ρ φ = βρ,

where α and β are proportionality constants. Moreover, the
space and metabolic costs of a nerve are proportional to
its volume [3], and given a fixed nerve length, these costs
are proportional to its total cross-sectional area s. Using the
above properties, we can show that1

Ri = λiTi

m∑
i=1

λi =
sβ

πα
(2)

A special case of (2) is when all axons are uniform, i.e.
when ρi are identical for all i. In such a case, we can think
of the nerve as a single communication channel with delay
Ts = Ti and R =

∑m
i=1Ri satisfying

R = λTs λ =
sβ

πα
. (3)

B. System-level SATs

We consider a sensorimotor control model with the system
dynamics

x(t+ 1) = ax(t) + w(t) + u(t) (4)

where x(t) ∈ R is the state, w(t) ∈ R is the disturbance,
u(t) ∈ R is the control action. We assume that the dis-
turbance is ∞-norm bound and, without loss of generality,
‖w‖∞ ≤ 1. The control action is generated through a
feedback loop, which is constrained by data rate R, delay

1 Due to space constraints, we present a more detailed derivation in the
extended version of this paper [21].

T , and potentially saturation. The control action is generated
by a controller Kt:

It = {x(0 : t), w(0 : t+ Ta), s(0 : t− 1)}
[s1(t), s2(t), · · · , sm(t)] = Kt(It)

(5)

and m quantizers:

u(t) =

m∑
i=1

Qi(si(t− Ti − Tc)), (6)

where Qi has data rate Ri. So R =
∑m
i=1Ri is the number

of bits per sampling interval that can be transmitted from the
sensors to the actuators in the feedback loop. We additionally
assume that the data rate is minimum stabilizing, i.e. R >
log(|a|) [22]. The controller can access the disturbance in-
formation with an advanced warning of Ta, but its command
is put into action with a delay of Ti + Tc, where Ti is the
signaling delay satisfying the SAT (2) or (3), and Tc ≥ 0
is other internal delays such as computation. We pose the
robust control problem as follows:

inf sup
‖w‖∞≤1

‖x‖∞, (7)

where the infimum is taken over the control policies of the
from (5) and (6). This robust control problem is motivated
by sensorimotor tasks such as driving and riding a mountain
bike (see Figure 1). In such tasks, x(t) models the error
between desired and actual trajectories; u(t) models the
control action taken by the sensorimotor system; and w(t)
models environmental noise and/or uncertainty in the desired
trajectory (see our companion paper on experiments [14] for
more detail).

The following lemma characterizes the performance limits
on system robustness.1

Lemma 1: Let R : Z+ → R+ be defined to be

R(h) :=

m∑
i=1

max{0, h− Ti − Tc + Ta}Ri.

The minimal state-deviation (7) is
∞∑
h=1

|ah−1| 1

2R(h)
. (8)

Formula (8) can be used to characterize the impact of
instability. Specifically, the minimal state-deviation (7) of an
unstable system with uniform axons (i.e. |a| ≥ 1, m = 1)
and Tc − Ta = 0 is given by2

sup
‖w‖∞≤1

‖x‖∞ ≥
T∑
i=1

|ai−1|+ |aT | 1

2R − |a|
, (9)

where the equality can be attained with minimal control
effort

sup
‖w‖∞≤1

‖u‖∞ =

(
|aT |+ |aT |

2R − |a|

)(
1− 1

2R

)
. (10)

2With a light abuse of notation, we denote
∑t2

i=t1
f(i) = 0 if t2 < t1.



The control policy that achieves (9) and (10) is given in [12].
Interestingly, this optimal controller resembles predictive
coding in neural signaling (see Section III-B for more detail).

Note that although unstable systems do not have a tradeoff
between minimizing state-deviation and minimizing control
effort, this property does not hold for stable systems, i.e.
|a| < 1. In particular, the minimal state-deviation (7) of a
stable system is given by1

T∑
i=1

|ai−1|+ |aT | 1

2R − |a|
if ` ≤ |a| 2R − 1

2R − |a|
T∑
i=1

|ai−1|+ |aT | 1− `
1− |a|

otherwise.

An important special case is the system with a = 1, which
reduces to the setting of our driving game experiment and
potentially other tasks such as riding a mountain bike [14]
or eye movements [12], [13]. If such system is built from
uniform axons, the minimal state-deviation (7) is given by

max(0, Ts + Tc − Ta) +
1

2R − 1
. (11)

We can interpret the first term as the error due to delay,
and the second term as the error due to quantization. Note
that the impact of delay and quantization is experimentally
verified in our driving game experiments [14].

If the system is built from two types of axons, i.e. m = 2,
then (8) reduces to

T1 +
1− 2−R1(T2−T1)

2R1 − 1
+

1

2R1(T2−T1)

1

2R1+R2 − 1
. (12)

We can similarly interpret the first term as the error due
to delay, and the second and third term as the error due
to quantization. Combining (11) with (3) for uniform axons
and (12) with (2) for diverse axons, we can obtain the system
SATs in sensorimotor control.

C. SATs in a layered architecture

Previous sections describe the SATs at the component and
system levels. In this section, we derive the SATs for layered
architectures. Figure 1 sketches a minimal layered senso-
rimotor control model composed of higher-layer planning
of trajectories and lower-layer reflex compensation to reject
disturbance. The control commands from both layers are put
into action by muscle. Specifically, we consider the system
dynamics

x(t+ 1) = ax(t) + u(t) + r(t) + w(t), (13)

where r(t) models the changes in the desired trajectory, and
w(t) models the disturbance. We assume that r(t), w(t) are
∞-norm bounded, and without loss of generality, ‖r‖∞ ≤ 1,
‖w‖∞ ≤ ε. We consider two specific ways of layering: with
and without sharing the disturbance information between
the two controllers. The layered control system with shared

information is defined by

It = {x(0 : t), w(0 : t), r(0 : t+ Ta)}
uh(t) = H(It−Th

, u(0 : t− 1))

u`(t) = L(It−T`−Tc
, u(0 : t− 1))

u(t) = Qm(Q`(u`(0 : t)), Qh(uh(0 : t))).

(14)

Here, H is a high-layer planner, L is a lower-layer distur-
bance compensator. The accuracy constraint of each con-
troller is modeled by quantizers Q`/Qh with data rates
R`/Rh. The commands from both controllers are put into
action by the muscle, whose accuracy is modelled by the
quantizer Qm with data rate Rm. The layering without shared
information is defined by

uh(t) = H(r(0 : t− Th + Ta), u(0 : t− 1))

u`(t) = L(w(0 : t− T` − Tc), u(0 : t− 1)) (15)
u(t) = Qm(Q`(u`(0 : t)), Qh(uh(0 : t))).

We pose the robust control problem as follows:

inf sup
‖w‖∞≤ε,‖v‖∞≤1

‖x‖∞, (16)

where the infimum is taken over the control policy with
shared information (14) or that without shared information
(15).

Let R̄` and R̄h are defined by

T̄` := T` + Tc R̄` := min(R`, Rm)

T̄h := Th − Ta. R̄h := min(Rh, Rm)

In the case with shared information, the minimum state-
deviation (16) achievable by controller (14) is

T̄∑̀
τ=1

|ai−1|+
∞∑

τ=T̄`+1

|ai−1|
2R̄`(τ−T̄`)+R̄h max(0,τ−T̄h)

 (1 + ε)

(17)
The proof of (17) is an trivial extension of Lemma 1. When
a = 1, (17) equals{
T̄` +

1− 2−R̄`(T̄h−T̄`)

2R̄` − 1
+

1

2R̄`(T̄h−T̄`)

1

2R̄`+R̄h − 1

}
(1 + ε).

(18)

In the case without shared information, the state-deviation
(16) achievable by the controller (15) is lower-bounded by

T̄∑̀
τ=1

|ai−1|+ |aT̄` |
2R̄` − |a|

 ε+

T̄h∑
τ=1

|ai−1|+ |aT̄h |
2R̄h − |a|

. (19)

The performance limit (19) is a simple generalization of
the results of [12, Section IV.C]. In the next section, we
using these formulas to explore the benefit of axon diversity
within/between levels and layers.



III. IMPLICATIONS

The results presented in Section II are first steps towards
integrating the previously disjoint fields of neurophysiology
and sensorimotor control, and towards providing a holistic
perspective on high-layer planning and low-layer disturbance
rejection. This perspective offers a more coherent view of
the complex design space. In particular, it addresses how
to exploit diversity both within a level and across layers
to achieve fast and accurate system performance despite
components that may be delayed or inaccurate.

Attaining optimal/robust performance requires two condi-
tions: optimal components (hardware) and an optimal con-
trol/communication policy. To achieve the former condition,
hardware needs to be built at a sweet spot in the component
SAT in order to attain low delay and quantization costs at the
system level. We show that such a sweet spot often lies at the
position at which diverse nerves are used within a feedback
loop, and at which diverse feedback loops are effectively
layered (Section III-A). To achieve the latter condition,
control/communication policy should have similar structures
to optimal controllers in theory. Interestingly, the seemingly
cryptic patterns of feedback and feedforward pathways seen
in vertebrate nervous systems qualitatively resemble optimal
controllers for delayed/quantized systems, as well as those
from the System Level Synthesis (SLS) method [23] for
distributed/localized systems (Section III-B).

A. Diversity sweet spots in SATs optimize performance

In sensorimotor control, it is well known that delays can
cause small disturbances to end up as large errors [24]. Yet
existing neurophysiology literature provides puzzling exam-
ples of sensorimotor nerves that are built toward achieving
high data rates [25], despite the inherent delays incurred
by such a property. Currently there exists no integrated
theory that could rigorously explain how component SATs
can be managed by neural systems to achieve good system
performance. The results presented in Section II-B address
this need, clarifying how to balance accuracy and speed
subject to the component-level SATs.

Consider the special case of the worst-case state deviation
for sensorimotor control in (11). Increasing signaling delay
Ts incurs a corresponding linear penalty in the delay error T
but leads to an exponential decrease in the quantization error.
This property is experimentally verified in our driving game
testbed [14]. Consequently, the minimum state-deviation is
achieved at a sweet spot of intermediate levels of Ts and R.

The exact position of the sweet spot depends on Tc − Ta.
For systems with a large delay (i.e. positive Tc − Ta), the
cost due to delay dominates the total cost, so minimizing Ts
at the expense of small R leads to optimal performance. For
systems with a large advance warning (i.e. negative Ta −
Tc), the cost due to quantization dominates the total cost, so
maximizing data rate R at the expense of large Ts leads to
better performance.

The framework developed in section II-B can further
describe the effects of diversity in neural composition on

Fig. 3: The benefit of within-level (left) and layering (right)
diversity. We use m = 1 for uniform nerves and m = 2 for
diverse nerves, and we set sβ/(πα) = 1 and Ti − Ta = 0.
In both cases, introducing diversity enables the system to
achieve better SAT performance.

performance. For the system with uniform nerves, we asso-
ciate its speed/accuracy with the delay/quantization costs in
(11). For systems with diverse communication channels, we
find its speed to be T1 in (12), i.e. the errors before the first
packet arrives, and its accuracy to be the remaining terms in
(12). In Figure 3 (right), we see that systems with diverse
nerves have an improved SAT compared with systems with
uniform nerves. These results suggest that a system made of
nerves that are not uniformly fast and accurate, but rather are
diverse in composition, can achieve performance as though
they were indeed uniformly fast and accurate. We name this
kind of effective architecture a diversity sweet spot (DSS).

Similarly, the results of section II-C demonstrate another
DSS and the benefit of diversity between layers. Figure 4
(left) compares the performance lower-bounds (19) for the
layered system without shared information (13), (15) when
the delay and data rate of the higher-layer (T`, R`) and
those of the lower-layer (Th, Rh) are allowed to be diverse
or are constrained to be uniform.3 The performance gain
is especially high when the two layers are heterogeneous,
i.e. large Tc − Ta (Figure 4), demonstrating the benefit
of using diverse nerves between high and low layers. A
similar DSS can be observed in an alternative setting of
shared information, whose performance lower-bound is given
by (18). The results suggest that layered architectures of
diverse control loops, if well-exploited, help achieve fast
and accurate sensorimotor performance despite the speed and
accuracy constraints of individual layers.

Delving further into this example, we observe DSSs in the
hardware that achieves this optimal system performance. The
optimal nerves for (19) with m = 2 have consistently small
T` to control the cost of delay, but allows Rh to increase for
large advanced warning Ta (Figure 4, right).

It is important to note that the properties we have found
to be optimal are indeed observed in nature. As seen in
Figure 2, the communication channels involved in our many
sensory modalities span the range of the SAT. Further, the
distributions of axons within nerves are highly diverse, espe-
cially those involved in sensorimotor control like the optic,
vestibular, and sciatic nerves. These observations indicate
that a diversely layered control architecture composed of

3Here, we assume that Rm is sufficiently large.



Fig. 4: The benefit of nerve diversity in layered architectures.
The left shows the minimum state-deviation (19) for varying
advanced warning Ta in the case when diverse delays and
data rates of L and H are allowed, versus the case when only
uniform delays and data rates are permitted (i.e. R` = Rh
and T` = Th). Other parameters are set to be R` = 0.1Ts,
Rh = 0.1Th, and Tc = 10. The right shows the resulting
optimal delays and data rates for the diverse case.

diversely distributed axon sizes is plausible within the limits
of observed neurophysiology.

B. Optimal controller structures resemble predictive coding

Predictive coding is a ubiquitous process throughout the
human brain, appearing across sensing, cognition, and con-
trol systems [26]. It is a compressed representation strategy,
wherein a system maintains an internal model of an incoming
signal; the model is used to predict future content of the
signal, the incoming signal is compared to the prediction, and
only the so-called prediction error needs to be communicated
back to the internal model in order to convey the information
in the incoming signal. Although a complex internal model
must be built and maintained, this strategy drastically reduces
the information that must be communicated in feedback
loops.

Interestingly, structures resembling predictive coding
emerge naturally in optimal controllers for delayed/quantized
systems (Section II-B) and that of System Level Synthesis
(SLS) for distributed/localized systems [23]. For a scalar
system (4), the optimal controller for (7) is given by:

K : u∗(t) = −ATw(t− T )−A(u(t− 1)− u∗(t− 1))

and a uniform quantizer QR in the interval [−L,L], where
L = |aT | + |aT+1|/(2R − |a|). On the other hand, the
optimal controller given by the System Level Synthesis
(SLS) methods has a procedure to estimate w(t) and x(t)
(involving ŵ(t) and x̂(t) in [23]), which are then used to
compute the control actions. In both cases, the system first
obtains the disturbance information and uses it to predict
future states; the state prediction is then compared with the
actual value, and only the error signal needs to be sent
through nerves.

IV. ALTERNATIVE MODELS

The framework presented in Section II allows us to accom-
modate different assumptions and models. In this section,
we study a few alternative assumptions: the average-case
analysis of a stochastic sensorimotor control setting (Section

IV-A), different types of neural encoding (Section IV-B), and
muscle actuation including reaching tasks (Section IV-C).

A. Average case analysis of a stochastic system

Section II provides a worst-case analysis of a deterministic
system with bounded noise and quantizers. Here, we consider
the average case when the disturbance is stochastic and the
mutual information between the sensor measurements and
control actions are limited by the constraints of the neural
signaling capability.

We consider a uniform feedback control model with the
system dynamics (4), where {w(t)} is a sequence of i.i.d.
random variables with mean 0 and variance 1. The controller
K is composed of an encoder and a decoder. At time t,
the encoder uses x(0, t), w(0, t), and s(0 : t) to generate
a channel input s∗(t) according to the probability density
function P (s∗(t)|x(0, t), w(0, t), s(0 : t − 1)). Then, a
communication channel sends s∗(t) to the decoder with delay
T ≥ 0, so s∗(t) is received at time t + T as s(t) with
potential error/noise. Then, the decoder generates a control
action u(t+T ) according to the probability density function
P (u(t + T )|s(0 : t)). The communication channel also
constraints the amount of information the feedback loop can
transmit, and this constraint is written as

lim
n→∞

1

n
I(x(0 : n− T );u(0 : n)) ≤ R. (20)

We consider minimizing the following mean-squared state
deviation:

inf lim
n→∞

1

n

n∑
t=1

E[x(t)2] (21)

where the infimum is taken over all control and communi-
cation policy of the form P (u(t)|x(0 : t− T ), u(0 : t− 1))
satisfying the communication constraints (20) and saturation
constraints

lim
n→∞

1

n

n∑
t=1

E[u(t)2] ≤ `.

We assume that the data rate is minimum stabilizing, i.e.
R > log(|a|) [22]. We adapt the results of control under
information constraints [27–30] to explicitly characterize the
impact of information constraints, delay, and saturation.

Let P : R+ → R+ and G : R+ → R+ be functions given
by

P (λ) =
1

2

{
1− λ+ a2λ+

√
4λ+ (a2λ− λ+ 1)

2

}
G(λ) =

a2P 3(a2Λ + a2(T+1) − Λ)

P 2 + 2λP + λ2 + λa2P 2
,

where Λ = a2(T+1)/(22R− a2). When ` < G(0), we define
λ∗ to be the strictly positive scalar that satisfies4

G(λ∗) = `. (22)

4Observe that G(λ) ≥ 0 by construction. In addition, the solution of (22)
is unique.



When ` ≥ G(0), we set λ∗ = 0. Given such λ∗, we define
the scalars P ∗ and G∗ to be P ∗ = P (λ∗) and G∗ = G(λ∗),
respectively. The fundamental limits in performance is given
below.1

Lemma 2: The minimal state-deviation (21) is2{
T∑
i=1

a2(i−1)

}
+ P ∗a2(T+1) +

a2(T+1)(P ∗a2 − P ∗ + 1)

22R − a2
,

which can be achieved with the control effort
limn→∞(1/n)

∑n
t=1 E[u(t)2] = G(λ∗).

A special case of Lemma 2 is when a = 1 and ` = ∞.
In this case, we have λ∗ = 0, P (λ∗) = 1, G(λ∗) = 1, and
thereby

inf lim
T→∞

1

T

T∑
t=1

E[x(t)2] = T +
1

22R − 1

Interestingly, though the control effort generally depends on
the data rate, at a = 1, limn→∞(1/n)

∑n
t=1 E[u(t)2] = 1

does not.

B. Sensory nerve signaling

The information in spikes can hypothetically be encoded
in many different ways [17], [19], [20], [31]. While section
II-A characterizes the neural signaling SATs assuming that a
nerve encode information in individual spikes, this section
derives the SATs under an alternative assumption: that a
nerve encode information in spike rates [32]. We can think
of the rate-based encoding as a Poisson-type communication
channel whose input is the spike rate γ(t) and the output is
the spike timing M(t). We assume that the spike timing is a
non-homogeneous Poisson point process with rate (intensity)
γ = {γ(t) ≥ 0 : t ∈ R+}, denoted by Pt(γ). The
communication channel is then given by

M(t) = Pt(γ).

where the spike rate is bounded by

γ(t) ≤ φ t ∈ R+, (23)

for some φ > 0. The information capacity of communication
channel (23) is defined to be

Cr = sup lim
T→∞

1

T
I(γT ;MT ),

where the supremum is taken over all distributions of the
input process Pγ(t) satisfying (23). Kabanov has shown in
[33] that Cr is upper-bounded by

Cr =
(φ+ 1)1+φ−1

2
−
(

1 +
1

φ

)
log(φ+ 1) (24)

So for sufficiently large φ,

Cr → φ/2 as φ→∞. (25)

Similarly to Section II-A, we obtain

Ri = λiTi

m∑
i=1

λi =
sβ

2πα
. (26)

Bits per time SATs
Spike-based φ sβT = 2παR
Rate-based φ/2 sβT = παR

TABLE I: Efficiency of different neural signaling schemes

The SATs (2) and (26) suggest that spike-based encod-
ing allows more information to be transmitted than rate-
based encoding under the same maximum spike rate φ,
Interestingly, the SATs of spike-based encoding and rate-
based encoding have qualitatively similar SATs: given a fixed
resource (space and metabolic cost to build and maintain a
never), the achievable data rate is roughly proportional to
delay.
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Fig. 5: Information capacity of spike-based coding (1) and
that of rate-based encoding (25) for a fixed achievable time
interval h.

C. SAT in muscle actuation and reaching tasks

In this section, we present another component and system
SATs that illustrate the DDS, involving muscle actuation and
reaching tasks. We consider a simplified muscle model which
includes m motor units, indexed by i ∈ {1, 2, · · · ,m}, each
associated with a reaction speed and a strength level. We
use Fi to denote its strength and assume without loss of
generality that F1 ≤ F2 · · · ≤ Fm. Motor units are recruited
in ascending order of Fi, so a muscle (at non-transient time)



can only generate m + 1 levels of discrete strength levels:∑n
i=1 Fi, n ∈ {0, 1, 2, · · · ,m}.1 Because the strength of

a motor unit is roughly proportional to its cross-sectional
area (myofibril cross-sectional area) [34], given a fixed
lengths, the maximum strength of a muscle ` =

∑m
i=1 Fi

is proportional to its cross-sectional area. This implies that,
given a fixed space to build a muscle, its maximum strength
does not depend on the specific composition of motor units.

Given a fixed maximum strength `, there is a tradeoff be-
tween a muscle’s reaction speed and resolution. Specifically,
if a motor unit is recruited at time t = 0, then its strength
ci(t) raises according to1

ȧi(t) = αfpi (1− ai(t))− βai(t) aqi (t) = ci(t) (27)

with the initial condition ci(0) = 0 and fi = 1/((γ/Fi)
1/q−

1) [5].5 Similarly, when a recruited motor unit is released at
time t = 0 its contraction rate falls according to (27) with
fi = 0 and ci(0) = Fi. The relation (27) indicates that the
reaction speed of a muscle is an increasing function of Fi.6

Constrained by ` =
∑m
i=1 Fi, a muscle can be built from

many motor units with small strengths or a few motor units
with large strengths. In the former case, the muscle has better
resolution but slow reaction speed, while in the latter case,
the muscle has fast reaction speed but coarser resolution.

Fig. 6: The SAT in a reaching task imposed by the SAT of a
muscle with uniform versus diverse motor units. For a fixed
sensorimotor control sampling interval, an upper bound F̄ on
the strength of recruitable motor units is obtained from the
target width (accuracy requirement) using (27). Then, from
F̄ , the reaching time is computed using (27) for the case of
recruiting all motor units with strength below F̄ .

This component SAT leads to a system SAT in a reaching
task. Consider reaching a hand towards a target of width D
located at a fixed distance (a task typically associated with
Fitts Law). In this task, the reaching time provides a measure
of speed and the target width is a measure of accuracy. Figure
6 shows this maximum reaching time (speed) given a fixed
target width (accuracy). When we naively build a muscle
using uniform motor units, the SAT has a linear form, which
is inconsistent with standard experiments. However, diversity
in motor units achieves a logarithmic SAT, yielding a DSS in
which both speed and accuracy can be achieved. Although

5Here, α = 1, β = 1, p = 1 are fixed constants, chosen to be standard
values suggested in [5].

6In other words, the time required for a muscle to reach to ci(t) = Fi

from ci(0) = 0 is decreasing in Fi.

this logarithmic SAT has been observed in the context of
Fitts law, the connection between the logarithmic nature of
Fitts law and the notion of DSS has not previously been
made.

V. CONCLUSION

We have presented the foundations of a control theoretic
framework that integrates previously disparate subfields of
surrounding sensorimotor control. This framework clarifies
the relationships between component properties, architectural
organization, and system performance in the context of
SATs. The framework is flexible enough to accommodate
a variety basic assumptions about the underlying systems
that it represents and its results are consistent with natural
observations from sensorimotor control and neurophysiology.
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